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Abstract—A theory is developed which governs the dynamic response of a homogeneous, elastic, dispersive
material. The material is used as 2 model of a two phase layered material in which each of the layers is
isotropically elastic. The theory is derived from a general theory for all two phase periodic materials which
was developed earlier{1].

The general theory was derived using the theory of mixtures. Dispersion is accommodated through the
use of elastodynamic operators and for the layered material a micro model is used to establish the forms of
the operators appropriate to the material. These specific operators are simplified by replacing them with
truncated power series before introducing them into the equations of linear momentum. The theory for
layered materials contains nineteen model constants and equations are developed from which these
constants can be derived from the layer constants. The equations are derived partly using micro model
analysis and partly by matching specific dynamic behaviors of the model and prototype. The ability with
which the model predicts the dynamic response of the layered material is assessed in two ways. Both
compare spectra reflecting the behavior of infinite trains of the principal kinds of waves. The first compares
spectral lines from the model with those derived from the exact theory for layered materials. The second
compares lines from the mode] with those obtained from experiments. Predictions from the model prove to
be quite accurate.

I. INTRODUCTION

This paper is the second of three devoted to developing a mathematical model of a material that
can be used to study the response of masonry walls to dynamic excitations. In formulating the
prototype we incorporate the following characteristics. Masonry walls consist of two phases,
blocks or bricks, and mortar; each phase is isotropically elastic; they are periodic in array and,
because of the bond between phases, the walls disperse waves travelling through them.

In the first paper[1], construction of the model began with the development of a theory for a
homogeneous material which replaces general two phase materials. The materials are general
except that they must display a periodic character and each of the phases must be linearly
elastic. The model material was constructed using the theory of mixtures and the reasons for
this choice are listed in Ref.[1).

In what follows, Section 2 is devoted to a brief review and restatement of this theory, which
consists of two types of equations. The first are the constitutive equations in which the stresses
and strains are related by 78 constants, and the second are the equations of linear momentum.
Dispersion is accommodated in the theory through so called elastodynamic operators which
appear in the latter equations.

In Section 3 the general theory is modified for a specific periodic array, namely a layered
material in which the phases appear as alternate plane layers. This geometry is chosen for two
reasons; firstly, because it is close to the geometry displayed by masonry and, secondly,
because there is a wealth of information about the dynamic response of such materials, both
from experiments and predicted by an exact theory.

Both the constitutive equations and the equations of lincar momentum are affected by this
choice of geometry. The layered material displays hexagonal symmetry which reduces the
number of independent constitutive constants from 78 to 15. The elastodynamic operators
appear in the general theory in symbolic form needing a specific geometry for their formulation.
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These operators are constructed in Section 3 from a study of a micro model, or cell, of the
layered material. This analysis is similar to one used by Biot[2, 3] for establishing a vis-
codynamic operator for a fluid-filled porous medium. The elastodynamic operators reflect the
behaviors at the interfaces. We felt that as first constructed the operators would render the
equations of linear momentum too complicated for realistic dynamic problems, so the final part
of Section 3 is devoted to replacing them by simpler approximations. To this end the operators
are expanded in power series of their argument, and the first three terms are retained. The
resulting equations of linear momentum contain four constants to accommodate dispersion. The
final theory which acts as a model for a two phase layered composite contains 19 model
constants.

Section 5 is devoted to constructing equations relating these 19 model constants to the
elastic constants of each of the two phases. The constants are adjusted so that the dynamic
responses of model and prototype will match as extensively as possible. The wealth of
information about the behavior of waves travelling in layered materials is extremely useful in
this section. The characteristics of the dynamic behavior of layered materials are almost
without limit, certainly far exceeding the 19 needed to establish the unknown constants. So the
constants are not unique and will change according to which set of behaviors is chosen for
matching. We discuss the choice at some length in Section § pointing out that the best set would
be obtained using system identification in conjunction with response obtained from experi-
ments. The method used here to derive the set of equations is, we think, the simplest. Some of
the equations are found using micro model analysis, while the remainder by matching properties
of spectral lines which reflect the behavior of infinite trains of the principal types of waves as
predicted by the model and the exact theory for layered materials. With the capability of
establishing the 19 model constants from the phase constants, the model is complete.

In the final section, Section 6, we make a preliminary assessment of the model material. We
consider it preliminary since, in a third paper, we make a much more demanding, and perhaps
more realistic, appraisal of the theory. In that paper we compare the behaviors of transient
waves as they propagate in the model and as observed in experiments conducted on layered
materials.

The assessment here is made by comparing spectral lines derived from the model with
comparable lines from the exact theory and from experiments. Comparison is shown in a
number of figures, in which all spectral lines reflect the behavior of infinite trains of the
principal types of waves. This preliminary assessment is valuable in that it shows that even with
the simplest procedure for establishing the model constants the prediction of the way in which
the principal waves propagate in the model material matches quite well the way in which
comparable waves propagate in two phase layered materials.

2. HOMOGENEOUS MODEL OF A TWO PHASE MATERIAL

In a previous study[1], an approximate theory was developed which governs the dynamic
behavior of a homogeneous, anisotropic, elastic, dispersive material. The material acts as a
model of general two phase materials. The latter materials are general except that they must
display a periodic character and each of the two phases must be linearly elastic. An outline of
this theory is presented here; in the equations which follow, however, the thermal effects
contained in [1] are disregarded.

The theory consists of two types of equations; those of linear momentum, and the
constitutive equations. The equations are referred to a Cartesian coordinate system (x;, x2, X3)
and are appropriate when the deformations are infinitesimal.

The equations of linear momentum are

doj; .
T(;‘-l +piF! + Ty - u) = py}

' @0
o 2 L gyl g2 .2
E}J&'szf‘, +F,~,~(u, —u,~)=pzv,» .
i

The first and second of eqns (2.1) apply to the first and second phases of the composite
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material respectively. The numbers one and two identify the phases and will be denoted in
general by a and 8. For the indices i, j (=1, 2, 3) the summation convention applies. The terms
appearing in eqns (2.1) are defined as follows: p, = n,p.%, partial masses for phases, measured

2
per unit volume of composite; n,, volume fraction of the ath phase with the property E' n,=1;

p.Y, mass density of ath phase; v, average velocity components for phases; u°, average
displacement components for phases; o, partial stress components for phases, measured per
unit area of composite; p,F, body force components for phases, measured per unit volume of
composite; and I'j;, components of a time dependent elastodynamic operator describing the
linear momentum interaction between the phases. The dot indicates partial differentiation with
respect to time.

The constitutive equations, which we present here in matrix form, are

{;} - [g:: EZ} {:;} ' 2.2)

In eqn (2.2) o” and ¢° are vector representations of the stress and strain tensors

o’ = (0'?(, Ug!: 0"3'% 0"1,2$ 0739 0'2'3)

2.3)
e = (e?h egb egl’ 28?2, 28‘1,3’ 23‘2’3)!
where the strain components, corresponding to the ath phase e are defined by
o 104" ?L‘E)
€ 2( ax, T ) 2.4)

C*? is a 6 X 6 material coefficient matrix of the form

cif o C

C*=
CZF ng

In Ref.[1], C'' and C* were shown to be symmetric matrices. Also C*' is equal to the
transpose of C'. It follows that the stiffness matrix is symmetric, i.c.

C¥=Cq(nm=1,...6).
Hence the constitutive equations for the general two phase material introduce 78 model
constants into the theory. The term C'? accommodates a coupling in the equations in that it
permits the state of stress of one phase to be affected by the deformation of the other. It was

also shown in the earlier paper that because the strain energy function must be positive definite,
the model constants must satisfy the inequality

§7Cs =0, 2.5)

where S is an arbitrary twelve dimensional vector and C is the symmetric 12 % 12 model
stiffnéss matrix defined by

Cll C12
C= {an sz} (2.6)

The inequality (2.5) is satisfied if C is positive definite.

§8 Vol. 15, No. 4—B
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3. HOMOGENEOUS MODEL FOR A TWO LAYER MATERIAL

In this section we choose a specific two-phase material, i.e. we choose a particular periodic
geometry for our medium. We trace the influences that this specified geometry has on the
general two phase theory, and modify the theory to this geometry. We will find that changes are
required in both the constitutive equations and the equations of linear momentum.

The material which we study is one in which the two materials alternate in plane layers. The
materials are called phases and each is identified by so called “‘phase constants”. Each phase is
isotropically elastic, so Lamé's constants p, and A, (a« = 1 or 2) and the mass densities p,* are
the phase constants. The two layers have thicknesses 2k, and 2k, respectively.

In what follows the laminated composite is referred to a Cartesian coordinate system (x,, x,,
x3) in which the x, axis is perpendicular to the planes of layering (see Fig. 1). With respect to
this reference frame the composite displays hexagonal symmetry, in which x, is the axis of
symmetry. We first study the constitutive equations.

(a) Constitutive equations

The hexagonal symmetry resulting from layered periodicity results in a reduction in the
number of model constants appearing in the constitutive equations. The stiffness matrices have
the forms,

(cf c® c%¥ o o 0
c# cg cg 0o 0 O
cC*=|C¥ C¥ C¥ 0 0 0 |(fora=Pp),
0 0 o0 Cc¥ o o0
0 0 0 o0 C¥ o
L0 o0 o0 o0 0 C¥]
3.1
where
1
C§=§CW—C?)
and
fcr ¢ c? 0 0 0
Ci C3 C% 0 0 0
c*=lcp cr ct 0o o0 o
0 0 0 C o o
0 0 0 0 0 O
0 0 0 o o0 CZ

- (3.2

Examination of eqns (3.1) and (3.2) shows that the number of independent constants has
been reduced to fifteen. This reduction results from symmetry and also from recognizing that
C2 = 0. The latter is obtained by integrating the constitutive relation &% = 2.8, (where &%
and &% are the actual shear stress and strain distributions for the a phase) over the thickness of
the « phase.

(b) Equations of linear momentum

In formulating the linear momentum equations for the general two phase theory, interaction
between the phases was accounted for by the term I'jj, which we called an elastodynamic
operator. With the hexagonal symmetry of the layered material, the operator has the form

Yy o o0
0o Y of
o o 1/

(rip= (3.3)
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Fig. |. A layered composite material.

The physical meaning of the components is derived from a study of eqns (2.1). The first, T')’,
describes the linear momentum interaction parallel to layering caused by the shear stresses at
the interfaces, I’y accounts for interaction normal to layering caused by the normal, interface
stresses. To gain insight into the forms of these two operators we analyze a micro model of the
layered material. The analysis, which is based on assumed deformation modes for the phases,
was previously used by Biot{2, 3] for constructing a viscodynamic operator for fluid filled
porous media.

Micro model analysis consists of a study of a unit cell of the composite material. The unit
cell consists of one layer of the first constituent bounded by two half layers of the second (see
Fig. 2). We refer the cell to a Cartesian coordinate system (x;, x,, X3) so that the x,~x, plane
coincides with the mid-plane of the first constituent and the x, axis is perpendicular to the
layers. The analysis is approximate in that a number of simplifying assumptions are made
pertaining to the state variables involved. First, the variables are assumed to depend only on the
thickness variable and time, so that the displacement, for example, & = L*(x,, ¢), where the
asterisk is used to denote actual distributions. In the general micro model theory, the same
quantities are assumed to be distributed symmetrically about the midplane of each layer. If this
simple theory proves to be inadequate, we would have to employ micromorphic mixture theory
which accommodates antisymmetric distributions. The results of the theory are expressed in
terms of the average values of the variables over the thickness. The average value of the
variable % is denoted by u* (no asterisk).

The derivation of expressions for I';' and I'} begins by substituting the displacements

b =t x 1) (34

X2

T
o | "
! J

Fig. 2. A unit cell.
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into the field equations of elasticity. The restricted space dependency leads to the equations

a*h,°
Ha 'a—r*‘ F. = paFlis"
ol
(Qua +4) 0 + F = p b (3.5)
25 a
Ho -a—z_"‘ F3 =P u3 .

where a = 1, 2 represents quantities in layers 1 and 2 respectively; and ;}“ are the components
of the body force.

In what follows, we develop an expression for I','; the method is the same for I',. The form
of T\ is governed by the interface shear stresses. For the assumed displacement field, these
stresses are related only to the displacement parallel to the layers and the relationships are

(3.6)

In our study of I'', we may pursue either &,* or &;* as both will lead to the same expression.
We choose the first, which is governed by the first of eqns (3.5), and continue by taking the
Laplace transform of each side of this equation. The result of this operation is the equation

*
dzzlal‘ 2% oL .. FlaL
axy e = e

where the superscript L denotes the Laplace transform of the quantity and

=&fl,2
Ko

o

in which p is the Laplace transform parameter.
In the integration of eqn (3.7) we exploit the symmetry of ul and F. . already discussed,

and further we make the same assumption as made by Biot[2], that F; is a constant.
Integration leads to the equation

%L = A, sinh m.x, + B, cosh mexz+ G, 338
where
al
P 39
p'ama

The four integration constants, A, and B,, appearing in eqn (3.8), can be determined by using
the continuity condition at the interface x,= h,,

GH=@»  @EW=E, (3.10)
and the conditions at the mid-planes x, =0 and x,=A=h;+ h,
Ei)g=0=0;  (E3)x=a=0 3.1

which are imposed by the symmetry of %,°. After some manipulation, the final form of hoetis
found to be
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L' = (G- Gy cosh myx; + G, (3.12)
aIZL = %(GI — szcosh maXq,— tanh mzA Sinh m2x2) + GZ,

where

= _L'i'!l__ M _
¢ ym, sinh mhy (sinh mzh, — tanh m;A cosh m;h)
D = (F-C) cosh m,h, (3.13)

l .
F= P (cosh m,h, — tanh m>A sinh m,h,).

To determine the interface shear stress we substitute eqns (3.12) into eqns (3.6), and obtain
* 1L * 2L C .
(021 )xyen, = (02 )apeiy = D wim(G, - G,) sinh mh,. (3.19)

Our objective is to relate the interface shear stress to the difference of the average horizontal
displacements. We formulate the averages

u'L=lIh'ﬁ'dez' wtt=L [ g g (3.15)
1 h] 0 1 ’ 1 h2 " 1 2y .

using 3.“" from eqns (3.12) and obtain an expression for their difference

U _ W g m '__l LA PP ]
- u't = (G, Gz)[D(—&mzuzmzh2+mlhl)sunhm.h.+1. (3.16)

By eliminating the factor (G, — G,) between eqns (3.14) and (3.16), after some manipulation, we
get

3
(&3epmm = G pmn, = T2 L', kW™ = '), (3.17)
where
1,12 | I 1
Li(x,', K2|)=§ . L Smh. x_sinh k; P !
n,' sinh x,' cosh ;' + r,k,' cosh «,' sinh «,' - (r, K—;, +r K—’;) sinh «,' sinh x,'
1
(3.18)
and the arguments «,' and «,' are defined by
k'=A \/ (ir’—) p, (3.19)
and
Ba 2
Chirs e ..2.:. Ty (3.20)

where n, = h,JA.
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Even though eqn (3.17) is written in the Laplace transform domain it can be interpreted
from operational calculus as given in the real time domain provided that the Laplace transform
parameter p is replaced by the operator (3/4t). In our analysis we adopt this interpretation and
accordingly drop the superscript L in eqn (3.17). In this case L(x,', «,') in eqn (3.18) becomes
an operator relating the relative average horizontal displacement to the interface shear stress. It
should be noted that the operator Li(x,, «,') is normalized so that L,(0,0)=1.

We now turn our attention to relating the elastodynamic operator I')’ to the operator L,. We
first note that the x, component of the linear momentum interaction M,' acting on the first
constituent and defined per unit volume of composite is related to the interface shear stress by

* 1
M, = T2)u=n G.21)

A

On the other hand, we see from eqns (2.1) and (3.3) that in our general formulation the same
interaction is given by

M =T ud - u). (3.22)

Considering eqn (3.17), and comparing eqns (3.21) and (3.22) we finally obtain the form of the
horizontal component of the elastodynamic operator as

IV = KiLi(x', k2, (3.23)
where the constant K is given by
Inr
K = K572' (3.29)

The operator Ty', which governs the vertical linear momentum interaction, can be obtained in a
similar way. In the derivation of this operator, the terms .® and &2, appearing in eqns (3.10)
and (3.11) must be replaced by %" and &%, respectively. The result is

Iy = KyLyx2, x20) (3.25)
where the constant K, and the operator Li(x/, x7%) can again be defined by eqns (3.24) and

(3.18), respectively, if the terms (ry, 13, 1, k', ') in these equations are replaced by (E, E,, E,
K%, k), respectively, where

2
=Ml p-SE, (3.26)
o a=1
and
2_ Pa
k2=A \/ ( Eﬂ) . 3.27)

We recognize at this point in the development that the elastodynamic operators will make
the equations of linear momentum too complicated for practical use. Accordingly, we replace
each of the operators by an approximation derived by expanding the operators Li{(x,', x,') and
Lak:2, k%), defined by eqn (3.18), in power series expansions of their arguments, and retain the
first three terms. This procedure yields

. 3
N'=K;+q P
(3.28)

2
[ S~
I =K+ a5
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where
2+ 2 E 2+ E 2
a ="———p&—"’5 i,  g=Ri’fis 3B L, (3.29)

Here we first note than eqn (3.28) is valid when the Laplace transform pmeter is small..This
means that eqn (3.28) represents an asymptotic form for the operators valid _for .Iarge times.
Secondly, we note that eqn (3.28) implies that the linear momentum interaction involves the
constituent relative acceleration. This violates the principle of material indifference becau§e the
constituent relative acceleration is not an objective quantity. This point is discussed in [4]
where the author states that this violation can be disregarded in linear theories.

When the expressions for Iy and T’ are introduced into the equations for linear momen-
tum, egns (2.1), we obtain the approximate form of these equations

l. o 0
% +piF'+ Kij(uf - ') = moy! - qiif

‘ (3.30)
2
%ﬁ + pZF,'z + Ku(ll]l - u,~2) =- q;ﬂ),'l + mf,-éf,
i
where
K, 0 0] q 0 0] (331)
(Kp=|0 K, 0Ff @)=|0 q OFf
0 0 Kl 0 0 ql
(pa+qV) 0 0 331)
(mp=| 0 (pat q2) 0 '
0 0 (pa + (h)

Equations (3.30) along with the constitutive equations, eqns (2.2), (3.1), (3.2) make up the
model theory governing the homogeneous material which replaces the two layer material. It
remains to establish the nineteen model constants of the theory in terms of the mechanical
properties ., A, and p,* of each of the two constituents.

4. COMMENTS ON THE THEORY

Before establishing equations giving the model constants in terms of the phase constants,
some comments on the theory are in order. There has already been work towards developing
the same kind of theory. For example, Bedford and Stern{5] using a quasi-static analysis, found
the same expression for K, (eqn 3.24). They proposed a special mixture theory for a layered
composite valid only for dilatational waves propagating parallel to the layers. Their theory takes
into account only the first term in the expansion of I')' and neglects the coupling in the
stress-strain relations.

In the development of the equations of linear momentum in Section 3, the components of
the elastodynamic operator I'j;, derived using a micro model analysis, are replaced by ap-
proximate forms. One might suspect that this step could make the resulting theory valid only
when the relative phase displacements vary slowly with changes in time. This restriction would
not be real if the frequency range of the theory accommodates the first nonzero cut-off
frequencies in spectra representing the behavior of dilatational and shear waves propagating in
the principal directions. Fortunately, this is the case for the present theory. In fact the
operators contain model constants that can be adjusted to make these cut-off frequencies from
the exact and model theories match. In the section which follows, the constants are used for
this purpose. In the last section on the assessment of the theory we show convincingly that the
approximations used for the elastodynamic operator are appropriate.

We end this section with two general remarks on the theory developed in Section 3. The first
is that we feel the equations of linear momentum (eqns 3.30), even though they were developed
for a layered two phase material, are appropriate for all periodic, two phase materials. We will
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use these same equations, for example, when developing a theory to represent a homogeneous
model for masonry walls, which have vertical layers in addition to horizontal. The difference
between the masonry model and that in which vertical layering is neglected will be reflected in
the forms for K;; and ¢; and the values of the constants in the matrices.

The last comment has to do with the model constants K, K,, g, and ¢,. We have already
found these in terms of the phase constants as given by eqns (3.24) and (3.29). These equations
are found by using micro model analysis which is based on assumed deformation modes for the
phases. It might well be that in producing a model that will behave like its prototype it is more
appropriate to assign other values to the constants. It seems sensible when starting the process
of establishing the set of model constants, to abandon the values of K, K, ¢, and g¢»
established by eqns (3.24) and (3.29) and have them unassigned as are the remaining fifteen.
Thus the two steps, the derivation of the forms of the equations of the model and the
establishment of the model constants, are clearly separated.

S. EVALUATION OF THE CONSTANTS

The theory just completed describes a homogeneous, dispersive material with hexagonal
symmetry, that will be used to act as a model or replacement of a two phase material composed
by alternating plane layers, each made up of an isotropically elastic material. The effectiveness
of the model can be judged only when it has been decided what behavior of the prototype it is
that we wish to mimic. In this study we will use the new material to predict the dynamic
behavior of the layered material. We have at our disposal nineteen constants that we can use to
this end.

We can establish the constants by matching the dynamic behaviors of the model and
prototype but the possible matching phenomena are almost without limit, certainly far beyond
nineteen, so that there is no unique set of constants or no unique material to be established. By
the dynamic behavior of the layered material we could mean dilatational waves parallel to the
layers, or shear waves normal to the layers or other variations; we could be referring to infinite
trains of waves or transient wave behavior of each type; and the behavior we are considering
could be that predicted by exact theories of layered materials, behavior of the model, or

behavior observed from experiments.

Our choice of a layered material as a special case of a two phase, periodic material was
made partly because a layered material is close to masonry but, equally important, the choice
was made because there is a rich supply of information about the dynamic behavior of layered
materials. We have at hand spectra developed from the exact theory for various types of trains
of waves, which can be adapted to any layer properties: experimental data describing the
behavior of both trains of waves and transient waves in several different two layer materials.

We can say unequivocally that the best set of constants would be those found using system
identification to match some experimental behavior, either steady state or transient. If we used
system identification we would have to decide at the beginning what few among the variety of
experimental behaviors it is that we choose to match. If it is the behavior of infinite trains of
waves in a variety of directions as reflected in spectral lines representing phase velocity vs
wave number then a criterion function would be chosen which would represent the ac-
cumulation of least squared errors between experimental points and model noints on the
spectra over whatever length of spectral lines we choose. An optimization algorithm would then
be constructed from which the nineteen constants are established that would minimize the
criterion function. We have had considerable experience with system identification, enough to
know, that with nineteen parameters involved, the problem in using this method would be
formidable. Accordingly, we leave this to a future study.

The method we use here to establish the nineteen constants in terms of the layer properties,
(which turns out to be successful) is a mixture of micro model analysis and matching of specific
properties of spectra from the exact theory reflecting the behavior of infinite trains of particular
types of waves. The method described in what follows is, we think, the simplest.

As we will be matching spectra for infinite trains of waves, we require the velocity equation.
and subsequently the frequency equation, which govern infinite trains of waves travelling in our
model material. To this end we adopt the trial solution
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ui“ = A’.‘ g‘“‘r""“) 5.1)

in which A are the amplitudes, e is the unit normal denoting the direction of propagation, k is
the wave number and ¢ the phase velocity. When we substitute (5.1) into the constitutive
relations (eqns 2.2), and the equations of linear momentum {eqns 3.30), and use the strain-
displacement relations (eqn 2.4), the condition for which a nontrivial solution will exist gives the
equation

[(p1p2+ p@)K?Ic* = [(p1 S22+ p2Sui + S)K* + PKICT+1(S1Sn~ S8k + SK1=0 (5.2)

for waves propagating in the x, and x, directions.

Equation (5.2) relates the phase velocity ¢ to the wave number k and it should be noted that
for each k there are two phase velocities leading to two spectral lines on the k-c plane.
Equation (5.2) will be used in the next section to trace out the spectral lines for a variety of
types of waves, but in this section we are primarily interested in the case where k is zero or
approaches zero. Study of eqn (5.2) shows that as k approaches zero, one value of ¢
approaches infinity, and the other approaches the cut-off velocity

(5.3)
where

2 2 2
p=2 s S=2 3 Ss

a=i =i

The values of S,s, K and g appearing in eqns (5.2) and (5.3) differ for each type of principal
wave. They are

for dilatational waves in the x; direction
Ss=Cif: K=K gq=gq (5.4)
for S, waves in the x, direction
Se=C#: K=Ky 4q=¢ (5.5)
for Sy waves in the x, direction
Se=C#¥; K=K q=gq (5.6)
for dilatational waves in the x, direction
Se=C#; K=K, q=gq 5.7
for shear waves in the x, direction
Se=Cd#;. K=K, q=q. (5.8
The phase velocity of the second branch goes to infinity as the wave number approaches
zero, so additional insight can be gained by studying the frequency equation. This is easily
obtained from eqn (5.2) when we recognize that the circular frequency o is related to k and ¢
according to w = kc. The frequency equation becomes
2+ pg)w* ~ (91822 + p2Sty + 4K + pK1w? + (8115~ S1uSi)k* + SKk?) = 0. (5.9)

When k =0, the equation becomes

(P12 + p)w* - pKw? =0 (5.10)
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so that the lowest spectral line emanates from the origin of the w — k plane, and the second has
the cut-off frequency

2 - BKa
@a (p1p2+ pqa) (51

The frequency w, is the cut-off for P and S, waves propagating in the x, direction, and S,
waves propagating in the x, direction; w, for S, waves in the x, direction and P waves in the x,
direction.

We now are in a position to begin the process of establishing equations that relate the model
constants to the properties of each of the two layers in the prototype.

Determination of K, and q,

We first establish equations from which K, K,, q, and g, the constants appearing in the
equations of linear momentum, can be found. In the previous section while developing the form
for the elastodynamic operator using micro model analysis, we found values for K, and K.
These values were temporarily abandoned to leave all constants free for evaluation by other
matching, but now we again adopt these equations. Accordingly, we establish K, and K, from
eqn (3.24).

On the other hand, we do not use our previous equations to establish ¢, and ¢;. These
constants determine directly the cut-off frequencies of infinite trains of waves, so we adjust
them so that the cut-off frequencies of P and S, waves in the x, direction predicted by the
model are the same as those predicted by the exact theory.

The cut-off frequencies @, and @, from the exact theory are the lowest nonzero roots
respectively of the equations

cos £,¢cos &3~ ! ;pp.' siné;siné; =1
1
, (5.12)
CcOS 1, COS N2 — l—;’g‘sm msing = 1.
In eqns (5.12)
& = 2h,n[C1" Na = 2ha@2/ C1°
a Ha . = /‘_".lg_ﬁ 5
o = \/(P—ak) 4 Ilzcrl (5.13)
o= [(Aet2pa). _ 2 G
co=(Bpde): et

The constants g, and g, are obtained by equating the w,’ in eqn (5.11) to the @, obtained from
eqns (5.12).

Determination of C$f, C¥ and C%

All of the equations establishing these constants are derived using micro model analysis. We
present the derivation of the equations from which the C3f are found, and then state the
comparable equations for the C5f and C{¥.

We assume a quasi-longitudinal deformation state paraliel to layering (see Fig. 2), so that
distance between the mid-planes of layers remain unchanged. If the lateral expansion (or
contraction) of the first constituent is 8, that of the second will be (- 4).

When we average the constitutive relations for &% and 6%

&0 = (A +210)8% + 4,65
1 ( M )‘u *22 (5.14)
3‘2'2 = (Aa + zﬂ'a)e‘b + Aae llll
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over the thickness of the ath constituent by using the formulas

= 1 *'*ld
~'2'h—l _hldn X2

(5.15)
_2 1 A-bkz*z
0’n=“2"}‘!'; . crndx;;etc.
we obtain
-1 -l é
Ull="lEle“+Al'2_};
(5.16)
o 8
iy = mE, &y, AzZ—h;
and
- ]
zz=)«|eh+m51m
5.17)

- - ]
% = hfh — mE, Ihy

At the interfaces of layers, 5'32 should be continuous. In the micro mode] we assume that this
continuity is approximately satisfied by that of the average 6%. By using eqns (5.17) and the
continuity of &%, the term 8 appearing in eqns (5.16) can be eliminated. This yields

(5.18)

When we use the equation o§; = n,%; which relates the partial stress of; to the average stress
&%, and note that ef, = &, we finally obtain

2
ah= ('h El-%)en‘*‘%\‘z'en

(5.19)

To obtain the constants Cif in terms of the properties of the layers we compare the
expression for i, and ok given by eqns (5.19) with those from the constitutive relations
equations (2.2). The comparable stresses are equal when

2 2
CH=n.2E,—A'—~ C%%=n,2£2—%; ch=cit=tits (5.20)

The relations, eqns (5.20), were obtained previously in [6], where a mixture theory, valid only
for dilatational waves propagating parallel to layering, was proposed.

Here we also note that a similar procedure to that described above was previously used by
Stern and Bedford[7] to establish all-of the constants of a model which they proposed by using
the theory of mixtures. In that work Stern and Bedford did not take into account the coupling in
the stress-strain relations which would imply that the state of stress on one phase is affected by
the deformation of the other.

Using the same method as for C$f, we find
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E E E,
CH:"M:E:Z C@:"z/\zz}l Cg:"ZAli
£ (5.21)
Ci=Cl=npp
and
Al A’
C=§=n.)\.—-é—.: Cﬁ:nz)tz——Ei. (5.22)

We note from Ref.{8] that the constants found using eqns (5.20)~(5.22) are identical with
those that will allow the cut-off phase velocities of P and Sy waves in the x, direction from the
model to match those given by the exact theory. The last analysis also gives Cii= C}=
(MA[E), but each of these is equal to C13, already established, so these equalities do not
provide independent information.

It only remains to establish C3f and C$f. and we choose to find these sets of constants by
adjusting the cut-off and asymptotic phase velocities of infinite trains of waves of two specific

types.

Determination of C¥ and C%

We find three independent constants C, C% and C33 (= C3) by matching three properties
of the spectral lines representing the relationship between phase velocity and wave numbers for
dilational waves travelling perpendicular to layering. A similar procedure was previously used
by Mindlin and McNiven[9] who matched cut-off frequencies to establish adjustment factors as
part of an approximate theory governing the vibrations of rods. We first match the cut-off
velocity of the lowest branch. We already have the velocity for the model from eqns (5.3) and
(5.7). The same velocity from the exact theory is

&= %‘-g—z. (5.23)
Matching gives the equation
Ch+CH+2CH= —%5—2 (5.24)

The other two equations are obtained by matching the asymptotic phase velocities for the
lowest and second lines, respectively.

We know from the exact theory that the asymptotic phase velocity of the lowest branch is
zero. When we derive this same velocity for the model from eqn (5.2) and set it equal to zero,

we get
CHCHE-CRch=0. (5.25)

Finally, from the exact theory we have the expression for the fastest transmitted wave

_EVE)
JE (o

When the velocity is equated to the second asymptotic phase velocity for the model derived
from eqn (5.2), we get a third independent equation

(5.26)

P1CH+ pCi=(pip2 + pga)cs’ — qz%g—‘. (5.27
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Comparable equations are obtained by matching the same quantities, this time for S, waves
propagating in the x, direction. The equations are

Cl+CB+20E= ’-'r'—z (5.28)
CUCEZ-CiCi=0 (5.29)
p|033+poli = (P102+PQ|)Cw2—q1 Ll_’_g‘ (5.30)

r

In eqn (5.30)

Jene)

VGG

With the set of equations established in this section, one is able to calculate the nineteen
model constants for a particular layered material for which the phase constants are specified.
This completes the formulation of the theory governing the model material.

Co=

6. ASSESSMENT OF THE MODEL

The final step in completing a theory is to ascertain how well it works. Here, we have
available a wealth of material describing three types of dynamic behavior of various layered
materials. The first is theoretical and consists of phase velocity and frequency spectra that
predict the behavior of infinite trains of waves from the exact theory. The second displays the

Table 1. Properties of Sun’s material
SPECIFIED LAYER PROPERTIES

R ~R - -~ 3 3
N N2 b Py F't K, X' )\z
0.8 0.2 3 1 100 1 150 | 2.333

COMPUTED MODEL CONSTANTS

K, K2 9 9.

36.923 |158.550| 0.041 | 0.040

=1 =22 =12

" =22 =12 =12
C" Cl! Cll

cl! clz C!l

o
]

230998} 0.855 | 0.762 | 5663 | 0.445 | 1416 | 1.778

-1 -22 =1 - 22 - 12 -~ - -
Cia | Cis | C2a | Coo | Cra | Caw | The | Cos

70.998 { 0.455 144.076 4.389 {-13.908}10.686 | 1.138 |-3.517

THE DIMENSIONLESS QUANTITIES APPEARING IN THIS
TABLE ARE DEFINED BY

R__R, R - _ 3.
AR xc-xu/”'z

- _(2h|)2 Kq - R aﬂ dﬁ
KC-T ; qa=qC/P2 ’ CU =C” /Fz'
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Table 2. Properties of thornel reinforced carbon phenolic
SPECIFIED LAYER PROPERTIES

h, h, Py P3 H K. A A,
dyne-usec?
cm —Y—L‘— dyne/cm? dyne /cm?
cm
0.0032 | 0.0279 1.47 1.42 0.756 |0.0662| 0.756 O.114
x10'? | x10'2 | x10'? | x10'2 | x10'2 | x10%

COMPUTED MODEL CONSTANTS

i 22
KI qI Cll C ] C:?
~ 2
dyne/cm* dyn:%_ dyne /cm® dyne/cm? dyne/cm?
227.213x10'2| 0.399x10'? | 0.210x10'? | 0.220x10'? | 0.0039x10'2

Table 3. Properties of boron reinforced carbon phenolic

SPECIFIED LAYER PROPERTIES

R R
h, h, P P> H Hs A Az
d - 2
cm w dyne/cm? dyne/cm?
cm
0.0052 | 0.026 2.37 1.42 0.951 |0.0662| 0.806 | O.114
x10'2 | x10'2 | x10'2 | x10'® | x10'2 | x10'?

COMPUTED MODEL CONSTANTS

K, q, Ci) cee ci
- 2
dyne/cm4 M dyne /em? dyne sem? dyne /em?
cm
239.387x10'2] 0.280x10'2 | 0.410x10'2 | 0.204x10'? | 0.0055x10'

same behavior from experimental observations, and the third describes transient wave behavior
from experiments.

The use of this transient wave behavior to assess the approximate theory is probably the
most demanding and the most satisfying, but since it requires additional theoretical develop-
ment this assessment is left to a separate paper.

We compare spectra derived from the model theory with the exact theory spectra of Sun et
al.[10) which they used to assess a first order effective stiffness theory for a layered composite.
The phase constants assumed by Sun and the comparable model constants are shown in Table
1. The experimental results used here are due to Whittier et al.[11]. They established spectral
lines representing the relationship between phase velocity and frequency for waves propagating
parallel to layering. The spectral lines are for two different layered material; thornel reinforced
carbon phenolic and boron reinforced carbon phenolic. The elastic properties of each of these
materials are shown in Tables 2 and 3, along with their respective model constants that are
needed.

Comparisons with the exact theory are displayed in Figs. 3-9. In these figures, the
dimensionless wave number £, the phase velocity 8 and the normalized frequency (} are given
by

E=2hk;  B=clualp®'" Q= 2hol(padp)" 6.1)



A mixture theory for elastic laminated composites

——— EXACY
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Fig. 3. Spectrum for dilatational waves propagating parallel to layering (Sun’s material).
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Fig. 4. The second spectral line on the frequency-wave number plane for dilatational waves propagating
parallel to layering (Sun’s material).
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EXACT
{4 — -o- — PRESENT APPROXIMATE THEORY
12 =
10
B s
6 e e J
4 b
2+
o} 1 1 1 L A E
(o} | 2 3 4 5
2h,
z_lé.
2h,

Fig. 5. Spectrum for SH waves propagating parallel to layering (Sun's material).
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Fig. 6. The second spectral line on the frequency-wave number plane for SH waves propagating paralie! to
layering (Sun’s material).
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14}
12 ¢~
0 |
B °r
6 -
EXACT
- - = PRESENT APPROXIMATE THEORY
4 - — wee FIRST ORDER EFFECTIVE STIFFNESS THEORY
-— - e SECOND ORDER EFFECTIVE STIFFNESS THEORY
L ¢
0 | 2 3 L} 5

T
2A -
_L I-H:M.Pa

L

Fig. 7. Spectrum for dilatational waves propagating perpendicular to layering (Sun's material).

Figures 3-8 show comparisons between spectral lines representing phase velocities for
waves travelling in principal directions. The matching is remarkably good. Figure 9 shows the
same comparison for waves propagating parallel to the x\~x; plane at an angle of 45° with the x,
axis. In Figs. 3 and 7 comparison is made not only with the exact theory but with spectral lines
derived from both first and second order effective stiffness theories[10, 12]. From both figures
we may conclude that the theory presented here is superior to the first order theory. In Fig. 3,
the present theory and the second order theory are about equally effective; while for P waves
travelling in the x, direction shown in Fig. 7, the second order effective stiffness theory is
superior to the present theory. However, it is important to point out that this preferable
performance is obtained at the expense of a considerable increase in complication. Even though
the dispersion introduced by the lower approximate spectral line appears to be slight, we can
report that the transient wave behavior, predicted by the present theory, of P waves propagat-
ing in the x, direction agrees well with the behavior reported from experiments. This com-
parison will be presented in a separate study.

In all of these figures the spectral lines give the relationship between phase velocity and
wave number. Since the second spectral line extends toward infinite phase velocity as the wave
number approaches zero, very little insight into the behavior of this higher mode is gained from
these figures for small wave numbers. Accordingly, for this mode, a comparison is made of
spectral lines reflecting the relationship between frequency and wave number; these lines have
finite cut-offs. Frequency spectra for this higher mode for P waves and S, waves propagating
parallel to layering are shown in Figs. 4 and 6, respectively.

The last two figures, Figs. 10 and 11, are devoted to thornel and boron reinforced carbon
phenolic laminates, respectively. In the figures we compare the first spectral lines found using

§S Vol. 48, No. &—C
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Fig. 8. Spectrum for transverse waves propagating perpendicular
to layering (Sun’s material).
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Fig. 9. Spectrum for waves propagating at an angle of 45° with the x,
axis (Sun's material).
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EXACT
o 0 © EXPERIMENT
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Fig. 10. First spectral line for dilatational waves propagating parallel to layering (thornel reinforced carbon
phenolic).
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Fig. 11. First spectral line for dilatational waves propagating parallel to layering (boron reinforced carbon
phenolic).

the present theory with the exact and experimenta ones for dilatational waves propagating
paraliel to layering. The comparisons are made on the (f-c) plane, where f is the cyclic
frequency, related to the angular frequency @ by f = w/2m. The figures indicate that agreement
between experimental and theoretical data is remarkably good.

Finally, an important point should be noted. For waves propagating perpendicular to
layering, the exact spectrum has a banded structure with passing and stopping bands. These
bands are regions of the spectrum representing harmonic waves that propagate and attenuate
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respectively. The present approximate theory and others, except those proposed by Herrmann,
Kaul and Delph([13, 14], do not predict the stopping bands. In these papers the authors have
developed a one-dimensional approximate theory, which they call effective dispersion theory,
for waves propagating perpendicular to layering only. Their theory accommodates the first
stopping band and approximates quite well the two lowest spectral lines over the first two
Brillouin zones. A refined three-dimensional approximate theory based on micromorphic
mixture theory is being developed for two phase composites by the authors of the present work
and will be reported soon. In that work it is found that the refined theory, which accomodates
both the symmetric and antisymmetric displacement distributions, within phases, predicts the
stopping bands for waves propagating perpendicular to layering.

Acknowledgement—The research reported was supported both by a grant from the National Science Foundation to the
University of California at Berkeley, and NATO Project No. 1446 with the Middle East Technical University in Ankara.
Turkey and the University of California at Berkeley.

REFERENCES

1. H. D. McNiven and Y. Mengi, A mathematical model for the linear dynamic behavior of two phase periodic materials.
Int. J. Solids Structures 15, 271-280 (1979).

2. M. A, Biot, Theory of propagation of elastic waves in a fluid saturated porous solid—Parts | and 11. J. Acoustical Soc.
Am. 28, 168-191 (1956).

3. M. A, Biot, Generalized theory of acoustic propagation in porous dissipative media. J. Acousticaf Soc. Am. 3, 1254-1264
(1962).

4. R. M. Bowen, Theory of mixtures. In Continuum Physics (Edited by A. C. Eringen). Vol. 11, pp. 1-127. Academic

Press, New York (1976).

. A. Bedford and M. Stern, Toward a diffusing continuum theory of composite materials. J. Appl. Mech. 38, 8-14 (1971).

6. G. A. Hegemier, G. A. Gurtman and A. H. Nayfeh, A continuum mixture theory of wave propagation in laminated and
fiber reinforced composites. Iat. J. Solids Structures 9, 395414 (1973).

7. M. Stern and A. Bedford. Wave propagation in elastic laminates using a multi-continuum theory. Acta Mechanica 15.
21-38 (1972).

8. S. M. Rytov, Acoustical properties of a thinly laminated medium. Soviet Physics-Acoustics 2, 68-80 (1955).

9. R. D. Mindlin and H. D. McNiven, Axially symmetric waves in elastic rods. J. Appl. Mech. 82E. 145-151 (1960).

16. C. T. Sun. . D. Achenbach and G. Herrmann, Continuum theory for a laminated medium. J. Appl. Mech. 35, 467-415
(1968).

11. 1. 8. Whitsier and J. C. Peck, Experiments on dispersive pulse propagation in laminated composites and comparison
with theory. J. Appl. Mech. 36, 485-490 (1969).

12. D. S. Drumheller and A. Bedford, Wave propagation in elastic laminates using a second order microstructure theory.
Int. J. Solids Structures 16, 61-76 (1974).

13. G. Herrmann, R. K. Kaul and T. J. Delph. On continuum modeling of the dynamic behavior of layered composities.
Archives of Mechanics 28, 405421 (1976).

14. G. Herrmann, T. J. Delph and R. K. Kaul. New results on continuum modeling of composites. Proc. 2nd Int.
Symp. Continuum Models of Discrete Systems. To be published.

ol



